Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 407326
Title An Alternate Method for Fourier Transform Infrared (FTIR) Spectroscopic Determination of Soil Nitrate Using Derivative Analysis and Sample Treatments
Author(s) Choe, E.; Meer, F. van der; Rossiter, D.; Salm, C. van der; Kim, K.W.
Source Water Air and Soil Pollution 206 (2010)1-4. - ISSN 0049-6979 - p. 129 - 137.
DOI http://dx.doi.org/10.1007/s11270-009-0091-z
Department(s) SS - Soil Quality and Nutrients
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) midinfrared spectroscopy - nitric-acid - water - identification - adsorption - ir
Abstract This study aimed at examining effective sample treatments and spectral processing for an alternate method of soil nitrate determination using the attenuated total reflectance (ATR) of Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, soil samples were prepared as paste to enhance adhesion between the ATR crystal and sample. The similar nitrate peak heights of soil pastes and their supernatants indicated that the nitrate in the liquid portion of the soil paste mainly responded to the FTIR signal. Using a 0.01-M CaSO4 solution for the soil paste, which has no interference bands in the characteristic spectra of the analyte, increased the concentration of the nitrates to be measured. Second-order derivatives were used in the prediction model to minimize the interference effects and enhance the performance. The second-order derivative spectra contained a unique nitrate peak in a range of 1,400-1,200 cm(-1) without interference of carbonate. A partial least square regression model using second-order derivative spectra performed well (R (2) = 0.995, root mean square error (RMSE) = 23.5, ratio of prediction to deviation (RPD) = 13.8) on laboratory samples. Prediction results were also good for a test set of agricultural field soils with a CaCO3 concentration of 6% to 8% (R (2) = 0.97, RMSE = 18.6, RPD = 3.5). Application of the prediction model based on soil paste samples to nitrate stock solution resulted in an increased RMSE (62.3); however, validation measures were still satisfactory (R (2) = 0.99, RPD = 3.0)
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.