Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 407370
Title Assessing the Impacts of Long-Range Sulfur and Nitrogen Deposition on Arctic and Sub-Arctic Ecosystems
Author(s) Forsius, M.; Posch, M.; Aherne, J.; Reinds, G.J.; Christensen, J.; Hole, L.
Source Ambio 39 (2010)2. - ISSN 0044-7447 - p. 136 - 147.
DOI http://dx.doi.org/10.1007/s13280-010-0022-7
Department(s) SS - Soil Chemistry and Nature
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) critical loads - terrestrial ecosystems - forest ecosystems - air-pollution - model - soil - acidification - uncertainty - simulation - pechenga
Abstract For more than a decade, anthropogenic sulfur (S) and nitrogen (N) deposition has been identified as a key pollutant in the Arctic. In this study new critical loads of acidity (S and N) were estimated for terrestrial ecosystems north of 60A degrees latitude by applying the Simple Mass Balance (SMB) model using two critical chemical criteria (Al/Bc = 1 and ANC(le) = 0). Critical loads were exceeded in large areas of northern Europe and the Norilsk region in western Siberia during the 1990s, with the more stringent criterion (ANC(le) = 0) showing the larger area of exceedance. However, modeled deposition estimates indicate that mean concentrations of sulfur oxides and total S deposition within the Arctic almost halved between 1990 and 2000. The modeled exceeded area is much reduced when currently agreed emission reductions are applied, and almost disappears under the implementation of maximum technically feasible reductions by 2020. In northern North America there was no exceedance under any of the deposition scenarios applied. Modeled N deposition was less than 5 kg ha(-1) y(-1) almost across the entire study area for all scenarios; and therefore empirical critical loads for the eutrophying impact of nitrogen are unlikely to be exceeded. The reduction in critical load exceedances is supported by observed improvements in surface water quality, whereas the observed extensive damage of terrestrial vegetation around the mining and smelter complexes in the area is mainly caused by direct impacts of air pollution and metals.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.