Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 407462
Title Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor
Author(s) Renirie, R.; Pukin, A.; Lagen, B. van; Franssen, M.C.R.
Source Journal of Molecular Catalysis. B, Enzymatic 67 (2010)3-4. - ISSN 1381-1177 - p. 219 - 224.
Department(s) Laboratory for Organic Chemistry
FBR Sustainable Chemistry & Technology
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) enzymatic-synthesis - catalyzed synthesis - bifidobacterium-adolescentis - water activity - glycosides
Abstract Previously it has been shown that glycerol can be regioselectively glucosylated by sucrose phosphorylase from Leuconostoc mesenteroides to form 2-O-alpha-D-glucopyranosyl-glycerol (Coedl et al., Angew. Chem. Int. Ed. 47 (2008) 10086-10089). A series of compounds related to glycerol were investigated by us to determine the scope of the alpha-glucosylation reaction of sucrose phosphorylase. Both sucrose and glucose 1-phosphate (GIP) were applied as glucosyl donor. Mono-alcohols were not accepted as substrates but several 1,2-diols were readily glucosylated, proving that the vicinal diol unit is crucial for activity. The smallest substrate that was accepted for glucosylation appeared to be ethylene glycol, which was converted to the monoglucoside for 69%. Using high acceptor and donor concentrations :up to 2.5 M), sucrose or GIP hydrolysis (with H2O being the 'acceptor') can be minimised. In the study cited above, a preference for glucosylation of glycerol on the 2-position has been observed. For 1,2-propanediol however, the regiochemistry appeared to be dependent on the configuration of the substrate. The (R)enantiomer was preferentialy glucosylated on its 1-position (ratio 2.5:1), whereas the 2-glucoside is the major product for (S)-1,2-propanediol (1:4.1). d.e.(p)s of 71-83% were observed with a preference for the (S)-enantiomer of the glucosides of 1,2-propanediol and 1,2-butanediol and the (R)-enantiomer of the glucoside of 3-methoxy-1,2-propanediol. This is the first example of stereoselective glucosylation of a non-natural substrate by sucrose phosphorylase. 3-Amino-1,2-propanediol, 3-chloro-1,2-propanediol, 1-thioglycerol and glyceraldehyde were not accepted as substrates. Generally, the glucoside yield is higher when sucrose is used as a donor rather than GIP. due to the fact that the released phosphate is a stronger inhibitor of the enzyme (in case of Cl P) than the released fructose (in case of sucrose). Essentially the same results are obtained with sucrose phosphorylase from Blfidobacterium adolescentis.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.