Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 407510
Title Influence of foliar phenology and shoot inclination on annual photosynthetic gain in individual beech saplings: A functional-structural modeling approach
Author(s) Umeki, K.; Kikuzawa, K.; Sterck, F.J.
Source Forest Ecology and Management 259 (2010)11. - ISSN 0378-1127 - p. 2141 - 2150.
DOI http://dx.doi.org/10.1016/j.foreco.2009.12.011
Department(s) Forest Ecology and Forest Management
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) temperate deciduous forests - broad-leaved trees - light conditions - leaf development - fagus-crenata - woody-plants - canopy gaps - carbon gain - growth - architecture
Abstract We developed a functional-structural plant model for Fagus crenata saplings and calculated annual photosynthetic gains to determine the influences of foliar phenology and shoot inclination on the carbon economy of saplings. The model regenerated the three-dimensional shoot structure and spatial and temporal display of leaves; we calculated the hourly light interception of each leaf with a detailed light model that allowed us to estimate hourly leaf photosynthetic gain taking leaf age into account. To evaluate the importance of simultaneous foliar phenology and slanting shoots in beech saplings, we calculated the photosynthetic budgets for saplings with contrasting foliar phenologies and shoot inclinations. In our simulations, we distinguished between simultaneous and successive foliar phenologies, upright and slanting shoot inclinations, and environments with and without a vertical gradient in light intensity. Other model parameters (including photosynthesis vs. light curve, leaf size, and leaf shape) were obtained directly from live beech saplings. With no vertical gradient in light intensity, modeled saplings with simultaneous foliar phenology and slanting shoots (as in live beech) had larger annual photosynthetic gains than saplings with other combinations of traits. Hence, simultaneous foliar phenology and slanting shoots are efficient ways to display leaves in the shaded forest understory light regime where beech saplings thrive. In the presence of vertical light gradients, which can occur in canopy gaps, saplings with upright shoots had larger annual photosynthetic gains than counterparts with slanting shoots. Although mean daily photosynthetic gains of saplings with successive foliar phenology were elevated by exposing leaves to strong light when young and productive, the annual photosynthetic budget of these saplings was reduced (compared to saplings with simultaneous foliar phenology) by their relatively short leaf lifespan. Overall, our results suggest that slanting shoots with simultaneous foliar phenology are particularly successful in shaded environments, where beech often dominates, because they appear to maximize the annual carbon budget by avoiding self-shading and extending leaf lifespans.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.