Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 408831
Title Spontaneous droplet formation techniques for monodisperse emulsions preparation – Perspectives for food applications
Author(s) Maan, A.A.; Schroën, C.G.P.H.; Boom, R.M.
Source Journal of Food Engineering 107 (2011)3-4. - ISSN 0260-8774 - p. 334 - 346.
Department(s) Food Process Engineering
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) in-water emulsions - through microchannel emulsification - silicon-nitride surfaces - membrane emulsification - polymeric microspheres - interfacial-tension - channel structure - aspect-ratio - oil - generation
Abstract Spontaneous droplet formation through Laplace pressure differences is a simple method for making monodisperse emulsions and is claimed to be suited for shear and temperature sensitive products, and those requiring high monodispersity. Techniques belonging to this category include (grooved) microchannel emulsification, straight-through microchannel emulsification, and EDGE (Edge-based Droplet GEneration). In this paper, an overview is given of the process, and design parameters that play a role in microchannel emulsification including their effect on droplet size and distribution. Besides, various products made by microchannel emulsification are discussed. Industrial microchannel emulsification is still not possible due to the low production rates. The new EDGE mechanism seems an interesting development, since it promises larger throughputs per droplet formation unit, better scalability, and shows robust operation with practical, food-grade components. However, for spontaneous emulsification techniques to be used on large scale, improvements in construction materials (including surface modification) are expected to be of essence.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.