Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 409078
Title Nitrogen mineralization: a review and meta-analysis of the predictive value of soil tests.
Author(s) Ros, G.H.; Temminghoff, E.J.M.; Hoffland, E.
Source European Journal of Soil Science 62 (2011)1. - ISSN 1351-0754 - p. 162 - 173.
Department(s) Chair Soil Chemistry and Chemical Soil Quality
Chair Soil Biology and Biological Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) available organic nitrogen - stabilization mechanisms - microbial biomass - matter fractions - chemical methods - grassland soils - land-use - indexes - plantations - management
Abstract Accurate estimation of mineralizable nitrogen (N) from soil organic matter is essential to improve fertilizer management in agricultural systems. Mineralizable N refers to the amount of N in soil that is released during a certain period (ranging from 1 week to the length of a growing season). It has been estimated from increases in inorganic N during incubation or from N uptake by plants grown in a greenhouse or field. Many chemical soil tests measuring extractable organic N (EON) fractions have been proposed to predict mineralizable N. We evaluated the predictive value of these soil tests, using 2068 observations from 218 papers. Meta-analysis was used to find the best soil test, to analyse differences between field and laboratory experiments, and to determine whether their predictive value is affected by extraction intensity (% of total soil N that is extracted). The concentration of EON was positively related to mineralizable N, explaining on average 47% of the variation. It did not, however, explain more of the variation than total N. Best predictions (57% <R2 <74%) were obtained when EON was extracted with hot CaCl2, acid KMnO4, acid K2Cr2O7, hot water or hot KCl. Extraction intensity was not related to the strength of the above-mentioned relationship. Predictions of mineralizable N were significantly worse when mineralization was measured in the field compared with measurements under controlled conditions. We found no evidence of a causal and direct relationship between EON and mineralizable N. Accuracy of soil testing may improve when the current ‘single soil test approach’ changes to a more complex approach, which includes different soil tests, soil properties and environmental conditions.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.