Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 409478
Title The AP-3 adaptor complex is required for vacuolar function in Arabidopsis
Author(s) Zwiewka, M.; Feraru, E.; Moller, B.K.; Hwang, I.; Feraru, M.I.; Kleine-Vehn, J.; Weijers, D.; Friml, J.
Source Cell Research 21 (2011). - ISSN 1001-0602 - p. 1711 - 1722.
Department(s) Biochemistry
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) auxin efflux carrier - protein complex - prevacuolar compartment - endocytic pathway - vesicle formation - lytic vacuoles - cell polarity - plant-cells - trafficking - clathrin
Abstract Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative d subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 ß, as well as dominant negative AP-3 µ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 ß and AP-3 d subunits. Furthermore, both proteins are closely linked with putative AP-3 µ and s subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.