Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 409662
Title Organic matter and seed survival of Striga hermonthica - Mechanisms for seed depletion in the soil
Author(s) Ayongwa, G.C.; Stomph, T.J.; Belder, P.; Leffelaar, P.A.; Kuyper, T.W.
Source Crop Protection 30 (2011)12. - ISSN 0261-2194 - p. 1594 - 1600.
Department(s) Crop and Weed Ecology
Flower Bulbs
Plant Production Systems
Chair Soil Biology and Biological Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) long-term management - strategy evaluation - ethylene production - fusarium-oxysporum - population-model - del. benth. - germination - decomposition - stimulation - longevity
Abstract Seed survival of Striga hermonthica is influenced by amendments of organic matter; however, the role of organic matter quality (C:N ratio) and mechanisms for enhanced seed decay are inadequately understood. In a field experiment, plots received a single dose of 6 t organic matter per hectare but with large differences in quality in terms of C:N ratio. Soil moisture, soil temperature and soil ethylene concentrations were measured, while buried nylon seed bags were periodically withdrawn from the soil and assayed for seed viability and germination. Organic matter amendments incorporated in the soil significantly depressed S. hermonthica seed survival. The effect was strongest with organic matter of high quality. Organic matter of low-quality enhanced soil water content during the first five days after a rainfall event and resulted in a 0.5 °C lower soil temperature. The highest observed ethylene concentrations in the soil were between 2 and 3 ppm, high enough to stimulate S. hermonthica seed germination. Maximal seed germination in vitro was obtained after 48 h of exposure to 1 ppm ethylene. However, observed changes in seed germination and viability of retrieved seed batches (seed survival) did not correlate with soil ethylene concentrations. The latter in turn did not differ between qualities of the applied organic matter. Seed survival decreased with increasing time of burial, especially after 4–8 weeks. As S. hermonthica attachment mainly occurs during the first four weeks of the cropping season the observed effect of seed decay may hardly be beneficial for the on-going cropping season. Nutrient release through decomposition of organic matter, enhancing decay of S. hermonthica seeds, is proposed as the probable cause of seed depletion in the soil.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.