Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 409717
Title Finessing atlas data for species distribution models
Author(s) Niamir, A.; Skidmore, A.K.; Toxopeus, A.G.; Munoz, A.R.; Real, R.
Source Diversity and Distributions 17 (2011)6. - ISSN 1366-9516 - p. 1173 - 1185.
Department(s) Resource Ecology
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) eagle hieraaetus-fasciatus - large-scale distribution - bonellis eagle - expert-system - spatial autocorrelation - breeding performance - statistical-models - aquila-fasciata - sample-size - conservation
Abstract Aim The spatial resolution of species atlases and therefore resulting model predictions are often too coarse for local applications. Collecting distribution data at a finer resolution for large numbers of species requires a comprehensive sampling effort, making it impractical and expensive. This study outlines the incorporation of existing knowledge into a conventional approach to predict the distribution of Bonelli's eagle (Aquila fasciata) at a resolution 100 times finer than available atlas data. Location Malaga province, Andalusia, southern Spain. Methods A Bayesian expert system was proposed to utilize the knowledge from distribution models to yield the probability of a species being recorded at a finer resolution (1×1km) than the original atlas data (10×10km). The recorded probability was then used as a weight vector to generate a sampling scheme from the species atlas to enhance the accuracy of the modelling procedure. The maximum entropy for species distribution modelling (MaxEnt) was used as the species distribution model. A comparison was made between the results of the MaxEnt using the enhanced and, the random sampling scheme, based on four groups of environmental variables: topographic, climatic, biological and anthropogenic. Results The models with the sampling scheme enhanced by an expert system had a higher discriminative capacity than the baseline models. The downscaled (i.e. finer scale) species distribution maps using a hybrid MaxEnt/expert system approach were more specific to the nest locations and were more contrasted than those of the baseline model. Main conclusions The proposed method is a feasible substitute for comprehensive field work. The approach developed in this study is applicable for predicting the distribution of Bonelli's eagle at a local scale from a national-level occurrence data set; however, the usefulness of this approach may be limited to well-known species
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.