Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 410264
Title Environmental Comparison of Biobased Chemicals from Glutamic Acid with Their Petrochemical Equivalents
Author(s) Lammens, T.M.; Potting, J.; Sanders, J.P.M.; Boer, I.J.M. de
Source Environmental Science and Technology 45 (2011)19. - ISSN 0013-936X - p. 8521 - 8528.
Department(s) Biobased Chemistry and Technology
Environmental Systems Analysis Group
Animal Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) life-cycle assessment - amino-acids - fermentation - resources - products - biomass - focus
Abstract Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.