Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 410506
Title Resonance of plankton communities with temperature fluctuations
Author(s) Beninca, E.; Dakos, V.; Nes, E.H. van; Huisman, J.; Scheffer, M.
Source American Naturalist 178 (2011)4. - ISSN 0003-0147 - p. E85 - E95.
DOI https://doi.org/10.1086/661902
Department(s) Aquatic Ecology and Water Quality Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) colored environmental noise - predator-prey system - food-web - population-dynamics - sustained oscillations - extinction risk - chaos - time - phytoplankton - variability
Abstract The interplay between intrinsic population dynamics and environmental variation is still poorly understood. It is known, however, that even mild environmental noise may induce large fluctuations in population abundances. This is due to a resonance effect that occurs in communities on the edge of stability. Here, we use a simple predator-prey model to explore the sensitivity of plankton communities to stochastic environmental fluctuations. Our results show that the magnitude of resonance depends on the timescale of intrinsic population dynamics relative to the characteristic timescale of the environmental fluctuations. Predator-prey communities with an intrinsic tendency to oscillate at a period T are particularly responsive to red noise characterized by a timescale of [Formula: see text]. We compare these theoretical predictions with the timescales of temperature fluctuations measured in lakes and oceans. This reveals that plankton communities will be highly sensitive to natural temperature fluctuations. More specifically, we demonstrate that the relatively fast temperature fluctuations in shallow lakes fall largely within the range to which rotifers and cladocerans are most sensitive, while marine copepods and krill will tend to resonate more strongly with the slower temperature variability of the open ocean
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.