Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 411213
Title Possibilities and limitations of artificial neural networks for sub-pixel mapping of land cover
Author(s) Nigussie, D.; Zurita Milla, R.; Clevers, J.G.P.W.
Source International Journal of Remote Sensing 32 (2011)22. - ISSN 0143-1161 - p. 7203 - 7226.
Department(s) Laboratory of Geo-information Science and Remote Sensing
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) remotely-sensed imagery - classification - resolution - meris - fusion
Abstract Although developments in remote sensing have greatly improved land cover mapping, the mixed pixel problem has not yet been fully addressed. Soft classification techniques have been introduced to address the problem, but they do not show the spatial location of the class proportions in a pixel. Subpixel mapping has been introduced to address the drawbacks of soft classifications. In this work, the feedforward backpropagating neural network (FFBPNN) was used for subpixel mapping. A set of class proportion images, which are to be treated as soft classification results, were created from a high spatial resolution (25 m) land cover dataset. For this purpose, the land cover dataset was aggregated both thematically (into two, four or eight land cover classes) and spatially (into proportion images with pixel sizes of 75, 150 and 300 m). This resulted in nine different combinations that were considered here as study cases. Several FFBPNNs were trained using these proportion images and the original land cover dataset (which was used as a target). Subsequently, the best networks were used to reconstruct high spatial resolution land cover maps of two heterogeneous areas in the south of The Netherlands. The overall accuracies obtained revealed that the networks were influenced by the spatial frequency, shape and size of the different land cover types. Moreover, it was revealed that most of the errors were on the class boundaries where highly mixed pixels are to be expected. The accuracies spanned a wide range of values depending on the complexity of the cases. Although it was not possible to exhaustively explore all network architectures, the results demonstrate the potential of the FFBPNN for subpixel mapping.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.