Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 411370
Title Climate change threatens endangered plant species by stronger and interacting water-related stresses
Author(s) Bartholomeus, R.P.; Witte, J.P.M.; Bodegom, P.M. van; Dam, J.C. van; Aerts, R.
Source Journal of Geophysical Research: Biogeosciences (2011). - ISSN 2169-8953
DOI http://dx.doi.org/10.1029/2011JG001693
Department(s) Soil Physics, Ecohydrology and Groundwater Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) klimaatverandering - bedreigde soorten - vegetatie - bodemwater - stress omstandigheden - droogte - ecohydrologie - climatic change - endangered species - vegetation - soil water - stress conditions - drought - ecohydrology - environmental variation - terrestrial ecosystems - hydraulic conductivity - regression quantiles - indicator values - soil-conditions - oxygen stress - root-growth - diversity
Categories Climatic Change
Abstract Atmospheric CO2-concentration, temperature and rainfall variability are all expected to increase in the near future. The resulting increased dynamics of soil moisture contents, together with increased plant physiological demands for both oxygen and water, will lead to an increased occurrence of wet and dry extremes of plant stresses, i.e. of oxygen and drought stress, respectively, alone and in interaction. The use of indirect environmental variables of previous studies and their focus on one stress at a time has hampered understanding the causal impact of climate change on plant species composition through changes in abiotic site conditions. Here, we use process-based simulations of oxygen and drought stress and show that both stresses will increase (on average with ca. 20% at sites where both stresses occur) in a warmer and more variable future (2050) climate (applying a national downscaled version of IPCC scenarios). These stresses will increasingly coincide, i.e. both stresses will occur more often (but not at the same time) within the same vegetation plot. We further show that particularly this increased coincidence of water-related stresses will negatively affect the future occurrence of currently endangered plant species (a reduction of 16%), while such a decrease is not apparent for common species. Individual stresses did not affect the occurrence of endangered plant species. Consequently, the species that are already threatened under the current climate, will suffer most from climate change
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.