Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 411380
Title Influence of mobile DNA-protein-DNA bridges on DNA configurations: Coarse-grained Monte-Carlo simulations
Author(s) Vries, R. de
Source Journal of Chemical Physics 135 (2011). - ISSN 0021-9606 - 10 p.
Department(s) VLAG
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) h-ns - statistical-mechanics - wormlike chains - organization - binding - flexibility - bacteria
Abstract A large literature exists on modeling the influence of sequence-specific DNA-binding proteins on the shape of the DNA double helix in terms of one or a few fixed constraints. This approach is inadequate for the many proteins that bind DNA sequence independently, and that are present in very large quantities rather than as a few copies, such as the nucleoid proteins in bacterial cells. The influence of such proteins on DNA configurations is better modeled in terms of a great number of mobile constraints on the DNA. Types of constraints that mimic the influence of various known non-specifically DNA binding proteins include DNA bending, wrapping, and bridging. Using Monte-Carlo simulations, we here investigate the influence of (non-interacting) mobile DNA-protein-DNA bridges on the configurations of a 1000 bp piece of linear DNA, for both homogeneous DNA and DNA with an intrinsic planar bend. Results are compared to experimental data on the bacterial nucleoid protein H-NS that forms DNA-protein-DNA bridges. In agreement with data on H-NS, we find very strong positioning of DNA-protein-DNA bridges in the vicinity of planar bends. H-NS binds to DNA very cooperatively, but for non-interacting bridges we only find a moderate DNA-induced clustering. Finally, it has been suggested that H-NS is an important contributor to the extreme condensation of bacterial DNA into a nucleoid structure, but we find only a moderate compaction of DNA coils with increasing numbers of non-interacting bridges. Our results illustrate the importance of quantifying the various effects on DNA configurations that have been proposed for proteins that bind DNA sequence independently.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.