Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 412168
Title A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family
Author(s) Rademacher, E.H.; Moller, B.K.; Lokerse, A.S.; Llavata Peris, C.I.; Berg, W.A.M. van den; Weijers, D.
Source The Plant Journal 68 (2011). - ISSN 0960-7412 - p. 597 - 606.
Department(s) Biochemistry
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) transcription factor - aux/iaa proteins - plant development - monopteros - root - embryo - thaliana - axis - transformation - specification
Abstract The plant hormone auxin triggers a wide range of developmental and growth responses throughout a plant’s life. Most well-known auxin responses involve changes in gene expression that are mediated by a short pathway involving an auxin-receptor/ubiquitin-ligase, DNA-binding auxin response factor (ARF) transcription factors and their interacting auxin/indole-3-acetic acid (Aux/IAA) transcriptional inhibitors. Auxin promotes the degradation of Aux/IAA proteins through the auxin receptor and hence releases the inhibition of ARF transcription factors. Although this generic mechanism is now well understood, it is still unclear how developmental specificity is generated and how individual gene family members of response components contribute to local auxin responses. We have established a collection of transcriptional reporters for the ARF gene family and used these to generate a map of expression during embryogenesis and in the primary root meristem. Our results demonstrate that transcriptional regulation of ARF genes generates a complex pattern of overlapping activities. Genetic analysis shows that functions of co-expressed ARFs converge on the same biological processes, but can act either antagonistically or synergistically. Importantly, the existence of an ‘ARF pre-pattern’ could explain how cell-type-specific auxin responses are generated. Furthermore, this resource can now be used to probe the functions of ARF in other auxin-dependent processes.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.