Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 412272
Title Bioscorodite crystallization for arsenic removal
Author(s) Gonzalez-Contreras, P.A.; Huisman, J.; Weijma, J.; Buisman, C.J.N.
Source In: Proceedings of 6th European Metallurgical Conference, June 26-29, 2011, Düsseldorf, Germany. - - p. 1751 - 1762.
Event European Metallurgical Conference, Düsseldorf, Germany, 2011-06-26/2011-06-29
Department(s) Sub-department of Environmental Technology
Publication type Contribution in proceedings
Publication year 2011
Abstract In the bio-scorodite process, arsenic is precipitated as crystalline iron arsenate, i.e. scorodite (FeAsO4·2H2O). This is a more economic and more environmentally friendly method for arsenic immobilization than the chemical production of iron- or calcium arsenate, as fewer chemicals are needed. Moreover, scorodite is an attractive medium for arsenic control and immobilization because it is stable, compact and has a very low solubility. Therefore it is regarded as the most ideal form for long-term arsenic storage. We have demonstrated that bio-crystallization of arsenic into scorodite crystals is possible with the aid of microorganisms. The operational conditions of the bio-scorodite process allow for a fast growth of the microorganisms and facilitate the crystallization of scorodite, avoiding the precipitation of other iron oxides or amorphous iron arsenates. The bio-scorodite process brings several advantages compared to chemical crystallization such as the lower required temperature (70°C), the control of supersaturation by biological oxidation and no need for crystal parents or seeds to begin the crystallization. Arsenic concentrations are removed to ppm level with starting concentrations ranging from 1000 to 2000 mg L-1. The produced bioscorodite crystals are very similar to the scorodite mineral found in nature. By control of the iron feed and the pH, the production of other iron precipitates is avoided. The latter facilitates easy separation of the solid product. Based on their highly crystalline nature, the biogenic scorodite crystals seem very suitable for safe disposal. At present the research has started with the continuous production of scorodite in bioreactors. The follow-up challenges are focused on the selection of a suitable reactor configuration.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.