Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 412991
Title Simulation of movement of pesticides towards drains with a preferential flow version of PEARL
Author(s) Tiktak, A.; Hendriks, R.F.A.; Boesten, J.J.T.I.
Source Pest Management Science 68 (2012)2. - ISSN 1526-498X - p. 290 - 302.
DOI https://doi.org/10.1002/ps.2262
Department(s) CWC - Integrated Water Resources Management
CWC - Environmental Risk Assessment
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) dutch clay soil - unsaturated soils - solute transport - macropore flow - water-flow - sandy soil - model - infiltration - rainfall - bromide
Abstract Background: As part of the Dutch authorisation procedure for pesticides, an assessment of the effects on aquatic organisms in surface waters adjacent to agricultural fields is required. The peak concentration is considered to be the most important exposure endpoint for the ecotoxicological effect assessment. Macropore flow is an important driver for the peak concentration, so the leaching model PEARL was extended with a macropore module. The new model has two macropore domains: a bypass domain and an internal catchment domain. The model was tested against data from a field leaching study on a cracking clay soil in the Netherlands.Results: Most parameters of the model could be obtained from site-specific measurements, pedotransfer functions and general soil structural knowledge; only three macropore-flow-related parameters needed calibration. The flow-related macropore parameters could not be calibrated without using the concentration in drain water. Sequential calibration strategies, in which firstly the water flow model and then the pesticide fate model are calibrated, may therefore be less suitable for preferential flow models.Conclusion: After calibration, PEARL could simulate well the observed rapid movement towards drains of two pesticides with contrasting sorption and degradation rate properties. The calibrated value for the fraction of the internal catchment domain was high (90%). This means that a large fraction of water entering the macropores infiltrates into the soil matrix, thus reducing the fraction of rapid flow.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.