Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 413059
Title Functional traits determine trade-offs and niches in a tropical forest community
Author(s) Sterck, F.J.; Markesteijn, L.; Schieving, F.; Poorter, L.
Source Proceedings of the National Academy of Sciences of the United States of America 108 (2011)51. - ISSN 0027-8424 - p. 20627 - 20632.
DOI https://doi.org/10.1073/pnas.1106950108
Department(s) Forest Ecology and Forest Management
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) rain-forest - dry forest - habitat associations - species coexistence - plant-communities - amazonian forest - shade tolerance - neutral theory - leaf - light
Abstract question in community ecology. Whereas neutral theory assumes that species are adapted to common field conditions and coexist by chance, niche theory predicts that species are functionally different and coexist because they are specialized for different niches. We integrated biophysical principles into a mathematical plant model to determine whether and how functional plant traits and trade-offs may cause functional divergence and niche separation of tree species. We used this model to compare the carbon budget of saplings across 13 co-occurring dry-forest tree species along gradients of light and water availability. We found that species ranged in strategy, from acquisitive species with high carbon budgets at highest resource levels to more conservative species with high tolerances for both shade and drought. The crown leaf area index and nitrogen mass per leaf area drove the functional divergence along the simulated light gradient, which was consistent with observed species distributions along light gradients in the forest. Stomatal coordination to avoid low water potentials or hydraulic failure caused functional divergence along the simulated water gradient, but was not correlated to observed species distributions along the water gradient in the forest. The trait-based biophysical model thus explains how functional traits cause functional divergence across species and whether such divergence contributes to niche separation along resource gradients.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.