Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 413144
Title Modelling interactions and feedback mechanisms between land use change and landscape processes
Author(s) Claessens, L.F.G.; Schoorl, J.M.; Verburg, P.H.; Geraedts, L.; Veldkamp, A.
Source Geophysical Research Abstracts 13 (2011). - ISSN 1029-7006
Department(s) Land Dynamics
Soil Physics, Ecohydrology and Groundwater Management
Landscape Centre
Publication type Abstract in scientific journal or proceedings
Publication year 2011
Abstract Land use changes and landscape processes are interrelated and influenced by multiple bio-physical and socioeconomic driving factors, resulting in a complex, multi-scale system. Consequently in landscapes with active landscape processes such as erosion, land use changes should not be analysed in isolation without accounting for both on-site and off-site effects on landscape processes. To investigate the interactions between land use, land use change and landscape processes, a case study for the Álora region in southern Spain is carried out, coupling a land use change model (CLUE) and a landscape process model simulating water and tillage erosion and sedimentation (LAPSUS). First, both models are run independently for a baseline scenario of land use change. Secondly,different feedbacks are added to the coupled model framework as ‘interaction scenarios’. Firstly effects of land use change on landscape processes are introduced by means of a ‘changed erodibility feedback’. Secondly effects of landscape processes on land use are introduced stepwise: i) an ‘observed erosion feedback’ where reallocation of land use results from farmers’ perception of erosion features, and ii) a ‘reduced productivity feedback’ whereby changes in soil depth result in a land use relocation. Quantities and spatial patterns of both land use change and soil redistribution are compared with the baseline scenario to assess the cumulative effect of including each of the interaction mechanisms in the modelling framework. Overall, total quantities of land use change (areas) and soil redistribution do not differ much for the different interaction scenarios. However, there are important differences in the spatial patterns of both land use and soil redistribution. In addition, by incorporating the perception and bio-physical feedback mechanisms, land use types with stable or increasing acreages are increasingly relocated from their original positions, suggesting a current location on landscape positions prone to soil erosion and sedimentation. Implementing the ‘reduced productivity feedback’ causes most of these effects. Another important outcome is that on-site land use changes trigger major off-site soil redistribution dynamics. These off-site effects are attributed to down slope or downstream changes in sediment transport rates and or discharge caused by changes in land surface characteristics. The results of this study provide insight into the interactions between different processes occurring within landscapes and the influence of feedbacks on the development of the landscape. The interaction between processes goes across various spatial and temporal scales, leading to difficulties in linked model representation and calibration and validation of the coupled modelling system
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.