Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
Record number 413334
Title Unraveling the rapid radiation of crested newts, Triturus cristatus superspecies, using complete mitogenomic sequences
Author(s) Wielstra, B.M.; Arntzen, J.W.
Source BMC Evolutionary Biology 11 (2011). - ISSN 1471-2148 - 8 p.
DOI https://doi.org/10.1186/1471-2148-11-162
Department(s) Resource Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) complete mitochondrial genomes - historical biogeography - phylogenetic analysis - mixed models - dna - salamandridae - phylogeography - nuclear - mtdna - speciation
Abstract Background - The rapid radiation of crested newts (Triturus cristatus superspecies) comprises four morphotypes: 1) the T. karelinii group, 2) T. carnifex - T. macedonicus, 3) T. cristatus and 4) T. dobrogicus. These vary in body build and the number of rib-bearing pre-sacral vertebrae (NRBV). The phylogenetic relationships of the morphotypes have not yet been settled, despite several previous attempts, employing a variety of molecular markers. We here resolve the crested newt phylogeny by using complete mitochondrial genome sequences. Results - Bayesian inference based on the mitogenomic data yields a fully bifurcating, significantly supported tree, though Maximum Likelihood inference yields low support values. The internal branches connecting the morphotypes are short relative to the terminal branches. Seen from the root of Triturus (NRBV = 13), a basal dichotomy separates the T. karelinii group (NRBV = 13) from the remaining crested newts. The next split divides the latter assortment into T. carnifex - T. macedonicus (NRBV = 14) versus T. cristatus (NRBV = 15) and T. dobrogicus (NRBV = 16 or 17). Conclusions - We argue that the Bayesian full mitochondrial DNA phylogeny is superior to previous attempts aiming to recover the crested newt species tree. Furthermore, our new phylogeny involves a maximally parsimonious interpretation of NRBV evolution. Calibrating the phylogeny allows us to evaluate potential drivers for crested newt cladogenesis. The split between the T. karelinii group and the three other morphotypes, at ca. 10.4 Ma, is associated with the separation of the Balkan and Anatolian landmasses (12-9 Ma). No currently known vicariant events can be ascribed to the other two splits, first at ca. 9.3 Ma, separating T. carnifex - T. macedonicus, and second at ca. 8.8 Ma, splitting T. cristatus and T. dobrogicus. The crested newt morphotypes differ in the duration of their annual aquatic period. We speculate on the role that this ecological differentiation could have played during speciation
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.