Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 413837
Title Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart.
Author(s) Braun, M.; Lansky, Z.; Fink, G.; Ruhnow, F.; Diez, S.; Janson, M.E.
Source Nature Cell Biology 13 (2011). - ISSN 1465-7392 - p. 1259 - 1264.
DOI http://dx.doi.org/10.1038/ncb2323
Department(s) Laboratory of Cell Biology
EPS-1
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) fission yeast - spindle midzone - cross-linkers - protein - kinesin-14 - binding - motors - prc1 - organization - cytokinesis
Abstract Short regions of overlap between ends of antiparallel microtubules are central elements within bipolar microtubule arrays. Although their formation requires motors1, recent in vitro studies demonstrated that stable overlaps cannot be generated by molecular motors alone. Motors either slide microtubules along each other until complete separation2, 3, 4 or, in the presence of opposing motors, generate oscillatory movements5, 6, 7. Here, we show that Ase1, a member of the conserved MAP65/PRC1 family of microtubule-bundling proteins, enables the formation of stable antiparallel overlaps through adaptive braking of Kinesin-14-driven microtubule–microtubule sliding. As overlapping microtubules start to slide apart, Ase1 molecules become compacted in the shrinking overlap and the sliding velocity gradually decreases in a dose-dependent manner. Compaction is driven by moving microtubule ends that act as barriers to Ase1 diffusion. Quantitative modelling showed that the molecular off-rate of Ase1 is sufficiently low to enable persistent overlap stabilization over tens of minutes. The finding of adaptive braking demonstrates that sliding can be slowed down locally to stabilize overlaps at the centre of bipolar arrays, whereas sliding proceeds elsewhere to enable network self-organization.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.