Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 414673
Title Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest
Author(s) Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.
Source Biotropica 44 (2012)3. - ISSN 0006-3606 - p. 276 - 283.
Department(s) Forest Ecology and Forest Management
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) tree species richness - amazonian rain-forest - terra-firme forests - habitat associations - ecuadorian amazonia - floristic variation - edaphic factors - beta-diversity - national-park - patterns
Abstract Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil conditions affect forest structure and diversity within each of the two forest types. After correcting for spatial effects, soil-vegetation relationships differed between the dry and the moist forest, being strongest in the dry forest. Furthermore, we hypothesized that soil nutrients would play a more important role in the moist forest than in the dry forest because vegetation in the moist forest is less constrained by water availability and thus can show its full potential response to soil fertility. However, contrary to our expectations, we found that soil fertility explained a larger number of forest variables in the dry forest (50 percent) than in the moist forest (17 percent). Shannon diversity declined with soil fertility at both sites, probably because the most dominant, shade-tolerant species strongly increased in abundance as soil fertility increased.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.