Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 416793
Title CCBE1 Is Essential for Mammalian Lymphatic Vascular Development and Enhances the Lymphangiogenic Effect of Vascular Endothelial Growth Factor-C In Vivo
Author(s) Bos, F.L.; Caunt, M.; Peterson-Maduro, J.; Planas-Paz, L.; Schulte-Merker, S.
Source Circulation Research 109 (2011). - ISSN 0009-7330 - p. 486 - 491.
DOI http://dx.doi.org/10.1161/CIRCRESAHA.111.250738
Department(s) Experimental Zoology
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) metastasis - disease - system
Abstract Rationale: Collagen- and calcium-binding EGF domains 1 (CCBE1) has been associated with Hennekam syndrome, in which patients have lymphedema, lymphangiectasias, and other cardiovascular anomalies. Insight into the molecular role of CCBE1 is completely lacking, and mouse models for the disease do not exist. Objective: CCBE1 deficient mice were generated to understand the function of CCBE1 in cardiovascular development, and CCBE1 recombinant protein was used in both in vivo and in vitro settings to gain insight into the molecular function of CCBE1. Methods and Results: Phenotypic analysis of murine Ccbe1 mutant embryos showed a complete lack of definitive lymphatic structures, even though Prox1+ lymphatic endothelial cells get specified within the cardinal vein. Mutant mice die prenatally. Proximity ligation assays indicate that vascular endothelial growth factor receptor 3 activation appears unaltered in mutants. Human CCBE1 protein binds to components of the extracellular matrix in vitro, and CCBE1 protein strongly enhances vascular endothelial growth factor-C–mediated lymphangiogenesis in a corneal micropocket assay. Conclusions: Our data identify CCBE1 as a factor critically required for budding and migration of Prox-1+ lymphatic endothelial cells from the cardinal vein. CCBE1 probably exerts these effects through binding to components of the extracellular matrix. CCBE1 has little lymphangiogenic effect on its own but dramatically enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Thus, our data suggest CCBE1 to be essential but not sufficient for lymphangiogenesis.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.