Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 416834
Title Sampling for validation of digital soil maps
Author(s) Brus, D.J.; Kempen, B.; Heuvelink, G.B.M.
Source European Journal of Soil Science 62 (2011)3. - ISSN 1351-0754 - p. 394 - 407.
DOI http://dx.doi.org/10.1111/j.1365-2389.2011.01364.x
Department(s) SS - Soil Geography
Land Dynamics
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) remotely-sensed data - accuracy assessment - classification accuracy - spatial interpolation - discriminant-analysis - design - model - quality - statistics - inference
Abstract The increase in digital soil mapping around the world means that appropriate and efficient sampling strategies are needed for validation. Data used for calibrating a digital soil mapping model typically are non-random samples. In such a case we recommend collection of additional independent data and validation of the soil map by a design-based sampling strategy involving probability sampling and design-based estimation of quality measures. An important advantage over validation by data-splitting or cross-validation is that model-free estimates of the quality measures and their standard errors can be obtained, and thus no assumptions on the spatial auto-correlation of prediction errors need to be made. The quality of quantitative soil maps can be quantified by the spatial cumulative distribution function (SCDF) of the prediction errors, whereas for categorical soil maps the overall purity and the map unit purities (user's accuracies) and soil class representation (producer's accuracies) are suitable quality measures. The suitability of five basic types of random sampling design for soil map validation was evaluated: simple, stratified simple, systematic, cluster and two-stage random sampling. Stratified simple random sampling is generally a good choice: it is simple to implement, estimation of the quality measures and their precision is straightforward, it gives relatively precise estimates, and no assumptions are needed in quantifying the standard error of the estimated quality measures. Validation by probability sampling is illustrated with two case studies. A categorical soil map on point support depicting soil classes in the province of Drenthe of the Netherlands (268 000 ha) was validated by stratified simple random sampling. Sub-areas with different expected purities were used as strata. The estimated overall purity was 58% with a standard error of 4%. This was 9% smaller than the theoretical purity computed with the model. Map unit purities and class representations were estimated by the ratio estimator. A quantitative soil map, depicting the average soil organic carbon (SOC) contents of pixels in an area of 81 600 ha in Senegal, was validated by random transect sampling. SOC predictions were seriously biased, and the random error was considerable. Both case studies underpin the importance of independent validation of soil maps by probability sampling, to avoid unfounded trust in visually attractive maps produced by advanced pedometric techniques
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.