Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 416839
Title Using additional criteria for measuring the quality of predictions and their uncertainties in a digital soil mapping framework
Author(s) Malone, B.; Gruijter, J.J. de; McBratney, A.B.; Minasny, B.; Brus, D.J.
Source Soil Science Society of America Journal 75 (2011)3. - ISSN 0361-5995 - p. 1032 - 1043.
DOI https://doi.org/10.2136/sssaj2010.0280
Department(s) Soil Science Centre
SS - Soil Geography
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) continuous depth functions - fuzzy k-means - maps - extragrades - information
Abstract In this paper we introduce additional criteria to assess the quality of digital soil property maps. Soil map quality is estimated on the basis of validating both the accuracy of the predictions and their uncertainties (which are expressed as a prediction interval [PI]). The first criterion is an accuracy measure that is different in form to the usual mean square error (MSE) because it accounts also for the prediction uncertainties. This measure is the spatial average of the statistical expectation of the mean square error of a simulated random value (MSES). The second criterion addresses the quality of the uncertainties which is estimated as the total proportion of the study area where the (1-a)–PI covers the true value. Ideally, this areal proportion equals the nominal value (1 - a). In the Lower Hunter Valley, NSW, Australia, we used both criteria to validate a soil pH map using additional units collected from a probability sample at five depth intervals: 0 to 5, 5 to 15, 15 to 30, 30 to 60, and 60 to 100 cm. For the first depth interval (0–5 cm) in 96% of the area, the 95% PI of pH covered the true value. The root mean squared simulation error (RMSES) at this depth was 1.0 pH units. Generally, the discrepancy between the nominal value and the areal proportion in addition to the RMSES increased with soil depth, indicating largely a growing imprecision of the map and underestimation of the uncertainty with increasing soil depth. In exploring this result, conventional map quality indicators emphasized a combination of bias and imprecision particularly with increasing soil depth. There is great value in coupling conventional map quality indicators with those which we propose in this study as they target the decision making process for improving the precision of maps and their uncertainties. For our study area we discuss options for improving on our results in addition to determining the possibility of extending a similar sampling approach for which multiple soil property maps can be validated concurrently
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.