Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 416965
Title Seasonal hysteresis of net ecosystem exchange in response to temperature change: Patterns and causes
Author(s) Niu, S.; Luo, Y.; Montagnani, L.; Janssens, I.A.; Gielen, B.; Rambal, S.; Moors, E.J.; Matteucci, G.
Source Global Change Biology 17 (2011)10. - ISSN 1354-1013 - p. 3102 - 3114.
DOI http://dx.doi.org/10.1111/j.1365-2486.2011.02459.x
Department(s) CWC - Earth System Science and Climate Change
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) carbon-dioxide exchange - scots pine forest - sub-alpine forest - soil respiration - deciduous forest - solar-radiation - boreal forest - co2 exchange - beech forest - southern finland
Abstract Understanding how net ecosystem exchange (NEE) changes with temperature is central to the debate on climate change-carbon cycle feedbacks, but still remains unclear. Here, we used eddy covariance measurements of NEE from 20 FLUXNET sites (203 site-years of data) in mid- and high-latitude forests to investigate the temperature response of NEE. Years were divided into two half thermal years (increasing temperature in spring and decreasing temperature in autumn) using the maximum daily mean temperature. We observed a parabolic-like pattern of NEE in response to temperature change in both the spring and autumn half thermal years. However, at similar temperatures, NEE was considerably depressed during the decreasing temperature season as compared with the increasing temperature season, inducing a counter-clockwise hysteresis pattern in the NEE–temperature relation at most sites. The magnitude of this hysteresis was attributable mostly (68%) to gross primary production (GPP) differences but little (8%) to ecosystem respiration (ER) differences between the two half thermal years. The main environmental factors contributing to the hysteresis responses of NEE and GPP were daily accumulated radiation. Soil water content (SWC) also contributed to the hysteresis response of GPP but only at some sites. Shorter day length, lower light intensity, lower SWC and reduced photosynthetic capacity may all have contributed to the depressed GPP and net carbon uptake during the decreasing temperature seasons. The resultant hysteresis loop is an important indicator of the existence of limiting factors. As such, the role of radiation, LAI and SWC should be considered when modeling the dynamics of carbon cycling in response to temperature change.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.