Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 417770
Title Light intensity, photoperiod duration, daily light flux and coral growth of Galaxea fascicularis in an aquarium setting: a matter of photons?
Author(s) Schutter, M.; Ven, R.M.; Janse, M.; Verreth, J.A.J.; Wijffels, R.H.; Osinga, R.
Source Journal of the Marine Biological Association of The United Kingdom 92 (2012). - ISSN 0025-3154 - p. 703 - 712.
DOI https://doi.org/10.1017/S0025315411000920
Department(s) Aquaculture and Fisheries
Bioprocess Engineering
VLAG
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) reef-building corals - great-barrier-reef - stylophora-pistillata - scleractinian coral - hermatypic coral - carbonate chemistry - tissue retraction - calcification - photosynthesis - respiration
Abstract Light is one of the most important abiotic factors influencing the (skeletal) growth of scleractinian corals. Light stimulates coral growth by the process of light-enhanced calcification, which is mediated by zooxanthellar photosynthesis. However, the quantity of light that is available for daily coral growth is not only determined by light intensity (i.e. irradiance), but also by photoperiod (i.e. the light duration time). Understanding and optimizing conditions for coral growth is essential for sustainable coral aquaculture. Therefore, in this study, the question was explored whether more light (i.e. more photons), presented either as irradiance or as light duration, would result in more growth. A series of nine genetically identical coral colonies of Galaxea fascicularis L. were cultured for a period of 18 weeks at different light duration times (8 hours 150 µE m-2 s-1:16 hours dark, 12 hours 150 µE m-2 s-1:12 hours dark, 16 hours 150 µE m-2 s-1:8 hours dark, 24 hours 150 µE m-2 s-1:0 hours dark) and different irradiance levels (8 hours 150 µE m-2 s-1:16 hours dark, 8 hours 225 µE m-2 s-1:16 hours dark and 8 hours 300 µE m-2 s-1:16 hours dark). Growth was determined every two weeks by measuring buoyant weight. Temperature, salinity and feeding levels were kept constant during the experiment. To detect possible acclimation of the corals to an increased light duration, rates of net photosynthesis and dark respiration were measured, hereby comparing coral colonies grown under an 8:16 hours light (150 µE m-2 s-1):dark cycle with corals grown under a 16:8 hours light (150 µE m-2 s-1):dark cycle. No increase in growth was detected with either increasing photoperiod or irradiance. Continuous lighting (24 hours 150 µE m-2 s-1:0 hours dark) resulted in immediate bleaching and the corals died after 14 weeks. Hourly photosynthetic rates were significantly reduced in the 16 hour light treatment compared to the 8 hour light treatment. As a result, daily net photosynthetic rates were not significantly different, which may explain the observed specific growth rates. Acclimation to photoperiod duration appeared neither to be mediated by changes in chlorophyll-a concentration nor zooxanthellae density. Based on the results of this study, we can conclude that the enhancing effect of light on coral growth is not only a matter of photons. Obviously, the availability of light was not limiting growth in these experiments and was probably in excess (i.e. stressful amounts). Other factors are discussed that play a role in determining growth rates and might explain our results.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.