Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 418327
Title Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in Northeastern Siberia
Author(s) Parmentier, F.J.W.; Huissteden, J. van; Molen, M.K. van der; Dolman, A.J.; Schaepman-Strub, G.; Karsanaev, S.A.; Maximov, T.C.
Source Journal of Geophysical Research: Biogeosciences 116 (2011). - ISSN 2169-8953 - 14 p.
Department(s) Meteorology and Air Quality
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) carbon-dioxide - arctic tundra - climate-change - water-vapor - net carbon - exchange - atmosphere - co2 - emission - system
Abstract In the past two decades, the eddy covariance technique has been used for an increasing number of methane flux studies at an ecosystem scale. Previously, most of these studies used a closed path setup with a tunable diode laser spectrometer (TDL). Although this method worked well, the TDL has to be calibrated regularly and cooled with liquid nitrogen or a cryogenic system, which limits its use in remote areas. Recently, a new closed path technique has been introduced that uses off-axis integrated cavity output spectroscopy that does not require regular calibration or liquid nitrogen to operate and can thus be applied in remote areas. In the summer of 2008 and 2009, this eddy covariance technique was used to study methane fluxes from a tundra site in northeastern Siberia. The measured emissions showed to be very dependent on the fetch area, due to a large contrast in dry and wet vegetation in between wind directions. Furthermore, the observed short- and long-term variation of methane fluxes could be readily explained with a nonlinear model that used relationships with atmospheric stability, soil temperature, and water level. This model was subsequently extended to fieldwork periods preceding the eddy covariance setup and applied to evaluate a spatially integrated flux. The model result showed that average fluxes were 56.5, 48.7, and 30.4 nmol CH4 m-2 s-1 for the summers of 2007 to 2009. While previous models of the same type were only applicable to daily averages, the method described can be used on a much higher temporal resolution, making it suitable for gap filling. Furthermore, by partitioning the measured fluxes along wind direction, this model can also be used in areas with nonuniform terrain but nonetheless provide spatially integrated fluxes
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.