Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 418623
Title A case of adaptive self-assembly
Author(s) Ding, Y.; Yang, Y.; Yang, L.; Yan, Yun; Huang, J.; Cohen Stuart, M.A.
Source ACS Nano 6 (2012)2. - ISSN 1936-0851 - p. 1004 - 1010.
DOI https://doi.org/10.1021/nn203453c
Department(s) PRI Bioscience
Physical Chemistry and Colloid Science
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) metallo-supramolecular polymers - phase-transition - spin-crossover - polyelectrolyte - complex - ligand
Abstract We report in this paper direct observation of redox-induced uptake of a charged species in micelles with a complex coacervate core, using a system consisting of negatively charged iron-coordination polymers and positively charged-b-neutral block co-polyelectrolytes. Neutral, charge-balanced micelles are first prepared by stoichiometric mixing of the oppositely charged components. Upon a redox stimulus, the micelles develop excess charges, which (as proposed in our previous work) most likely lead to sequestration of oppositely charged species, as the charge balance has to be restored. In this work we verify this prediction by using a rigid, rod-like iron coordination polymer, namely, the positively charged MEPE, as the species to be taken up. After uptake of this rigid cargo, the morphology of the micelles was found to transform from spheres to banana-shaped bundles and fibers, which clearly indicate the uptake of MEPE in the micellar core. Our result proves that the redox stimulus indeed induces excess charges in the core, which forces the self-assembled particles to change both composition and shape. As an interesting example of “adaptive self-assembly”, our findings also pave the way to novel redox-triggered uptake and release systems.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.