Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 420079
Title The endocrine disruptors dibutyl phthalate (DBP) and diethylstilbestrol (DES) influence Leydig cell regeneration following ethane dimethane sulphonate treatment of adult male rats
Author(s) Heng, K.; Anand-Ivell, R.; Teerds, K.J.; Ivell, R.
Source International Journal of Andrology 35 (2012)3. - ISSN 0105-6263 - p. 353 - 363.
DOI http://dx.doi.org/10.1111/j.1365-2605.2011.01231.x
Department(s) Human and Animal Physiology
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) insulin-like factor-3 - in-utero exposure - gene-expression - luteinizing-hormone - rodent testis - differentiation - destruction - population - insl3 - fetal
Abstract The manner by which endocrine-disrupting xenobiotics, such as phthalates, can induce changes in the development of the male reproductive system still remains largely unknown. Herein, we have explored the application of ethane dimethane sulphonate (EDS) to eliminate adult-type Leydig cells in the mature rat testis, leading to their regeneration from resident stem cells, as a novel system to investigate the effects of dibutyl phthalate (DBP) and diethylstilbestrol (DES) on adult-type Leydig cell differentiation. The advantage of this model is that one can study adult-type Leydig cell differentiation in vivo divorced from the concomitant endocrine development of puberty. In these preliminary studies, we show that both DBP and/or DES, given for 2 or 4 days following EDS application, indeed affect Leydig cell differentiation in the adult testis, largely by increasing early Leydig cell proliferation and possibly thereby delaying early differentiation. In particular, on day 27 post-EDS, a time-point when the differentiation trajectory appears to be most discriminating, we observe that both DBP and/or DES cause a fourfold increase in Leydig cell density, and a significant increase in the expression of the Leydig cell-specific marker transcripts INSL3, LH receptor, Cyp17a1 and Cyp 11a1. In conclusion, both DBP and DES are able to affect adult-type Leydig cells during their differentiation to cause a significant perturbation in their ultimate functional capacity.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.