Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 422185
Title Performance of Alcalase formulations in near dry organic media: Effect of enzyme hydration on dipeptide synthesis
Author(s) Vossenberg, P.; Beeftink, H.H.; Nuijens, T.; Quaedflieg, P.J.L.M.; Cohen Stuart, M.A.; Tramper, J.
Source Journal of Molecular Catalysis. B, Enzymatic 78 (2012). - ISSN 1381-1177 - p. 24 - 31.
DOI https://doi.org/10.1016/j.molcatb.2012.01.022
Department(s) Bioprocess Engineering
Physical Chemistry and Colloid Science
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) industrial protease alcalase - catalyzed peptide-synthesis - controlled water activity - subtilisin carlsberg - precursor dipeptide - support material - solvents - immobilization - transesterification - tripeptide
Abstract The use of different Alcalase formulations for protease-catalyzed dipeptide synthesis was investigated by studying the coupling of the carbamoylmethyl ester of N-protected phenylalanine with phenylalanine amide in tetrahydrofuran in the presence of molecular sieves (i.e. under near dry conditions). Hydration prior to drying (with anhydrous tert-butanol and anhydrous tetrahydrofuran) of the Alcalase formulations resulted in a significant increase in rate of the subsequent dipeptide synthesis. Repeated use, in the presence of molecular sieves, without intermediate rehydration led to inactivation of the enzyme. For three enzyme formulations this inactivation could be counteracted by intermediate rehydration. Inactivation of another enzyme formulation was only partially reversible by hydration. Alcalase immobilized onto dicalite with glutaraldehyde was found to be the most active in dipeptide synthesis, i.e. the formulation that initially produces the largest amount of product per gram of total formulation per unit of time. Due to its small particle size and its lack of operational stability, this formulation may nevertheless not be the best choice for the synthesis of dipeptides in neat organic media on a large scale. The most promising enzyme formulation for this is Alcalase covalently immobilized onto macroporous acrylic beads due to its reasonable activity, its seemingly good operational stability, and its size and uniform shape
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.