Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 422239
Title JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis
Author(s) Wu, A.; Devi Allu, A.; Garapati, P.; Siddiqui, H.; Dortay, H.; Zanor, M.I.; Amparo Asensi-Fabado, M.; Munne´ -Bosch, S.; Antonio, C.; Tohge, T.; Fernie, A.R.; Kaufmann, K.; Xue, G.P.; Mueller-Roeber, B.; Balazadeh, S.
Source The Plant Cell 24 (2012)2. - ISSN 1040-4651 - p. 482 - 506.
DOI http://dx.doi.org/10.1105/tpc.111.090894
Department(s) PRI Bioscience
EPS-1
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) programmed cell-death - heat-stress response - leaf senescence - gene-expression - hydrogen-peroxide - oxidative stress - glucosinolate biosynthesis - comprehensive analysis - environmental-stress - functional-genomics
Abstract The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species–responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.