Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 423757
Title Advanced oxidation to eliminate growth inhibition and to degrade plant protection products in a recirculating nutrient solution in Rose cultivation
Author(s) Os, E.A. van; Maas, A.A. van der; Meijer, R.J.M.; Khodabaks, M.R.; Blok, C.; Enthoven, N.L.M.
Source In: ISHS 28th Int. Horticultural Congress - Science and Horticulture for People (IHC 2010): International Symposium on Greenhouse 2010 and Soilless Cultivation. - Lisbon, Portugal : ISHS - ISBN 9789066057241 - p. 941 - 947.
Event Lisbon, Portugal : ISHS - ISBN 9789066057241 28th International Horticultural Congress, 2010-08-22/2010-08-27
Department(s) WUR GTB Tuinbouw Technologie
WUR GTB Teelt & Bedrijfssystemen
WUR GTB Gewasgezondheid
WUR GTB Gewasfysiologie Management en Model
Publication type Contribution in proceedings
Publication year 2012
Abstract The EU Water Framework Directive demands a sound ecological and chemical basis for ground and surface waters. This has motivated the Dutch greenhouse industry to seek more sustainable water management procedures which will enable a zero-emission of nutrients and plant protection products (PPP) in the year 2027. Although closed soilless growing systems are widely applied in The Netherlands, it appears that discharge of nutrients varies between 5 and 40%. Discharge based on salinity is only a minor part, up to 15%. In rose cultivation, growth inhibition is the major reason for discharge of the nutrient solution. Former research could not find a proper reason for growth inhibition, but it is most likely of organic origin. The water treatment method of advanced oxidation, at which first hydrogen peroxide is added, directly followed by an exposure to UV-C light (200-280 nm), is known to degrade large organic molecules. Therefore this method has been investigated to eliminate growth inhibition and also to degrade PPPs. Among all methods advanced oxidation has been a first choice because many rose growers already possess a UV installation for elimination of pathogens from the recirculating solution. Trials with advanced oxidation have been performed at two rose nurseries at which the dosages of hydrogen peroxide (0-25 mg/L) and UV lighting (0-900 mJ/cm2) have been varied to search for indications for elimination of growth inhibition and the degradation of PPPs. After treatment samples were taken to test for growth inhibition of the solution in a bioassay, Phytotoxkit; the chemical composition; the residual amount of PPPs and the presence of micro-organisms. Preliminary results show that (1) growth inhibition exists and can be decreased, (2) plant protection products can be degraded, (3) pathogens have been eliminated and (4) composition of the nutrient solution is unchanged except for iron.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.