Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 424150
Title Distorted-distance models for directional dispersal: a general framework with application to a wind-dispersed tree
Author(s) Putten, B. van; Visser, M.D.; Muller-Landau, H.C.; Jansen, P.A.
Source Methods in Ecology and Evolution 3 (2012)4. - ISSN 2041-210X - p. 642 - 652.
DOI https://doi.org/10.1111/j.2041-210X.2012.00208.x
Department(s) Biometris (WU MAT)
Forest Ecology and Forest Management
Resource Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) seed dispersal - pollen dispersal - recruitment limitation - anisotropic dispersal - mechanistic models - patterns - environments - forests - identification - consequences
Abstract 1. Seed and pollen dispersal is often directionally biased, because of the inherent directionality of wind and many other dispersal vectors. Nevertheless, the vast majority of studies of seed and pollen dispersal fit isotropic dispersal kernels to data, implicitly assuming that dispersal is equally likely in all directions. 2. Here, we offer a flexible method for stochastic modelling of directional dispersal data. We show how anisotropic models can be constructed by combining standard dispersal functions with ‘distorted- distance functions’ that transform the circular contour lines of any isotropic dispersal kernel into non-circular shapes. Many existing anisotropic phenomenological models of seed and pollen dispersal are special cases of our framework. 3. We present functional forms for the specific case of elliptic distorted-distance functions, under which contour lines of the seed shadow become non-concentric, nested ellipses, and show how models using these functions can be constructed and parameterized. R-code is provided. 4. We applied the elliptic anisotropic models to characterize seed dispersal in the wind-dispersed Neotropical tree Luehea seemannii (Malvaceae) on Barro Colorado Island, Panama. We used inverse modelling to fit alternative models to data of seed rain into seed traps, the locations of seed traps and adult trees, and tree size. 5. Our anisotropic model performed considerably better than commonly applied isotropic models, revealing that seed dispersal of L. seemannii was strongly directional. The best-fitting model combined a 3-parameter elliptic distorted-distance function that captured the strong directional biases with a 1-parameter exponential dispersal kernel, a 1-parameter negative binomial probability distribution describing the clumping of seed rain and a 1-parameter function relating tree fecundity to tree diameter. 6. The framework presented in this paper enables more flexible and accurate modelling of directional dispersal data. It is applicable not only to studies of seed dispersal, but also to a wide range of other problems in which large numbers of particles disperse fromone or more point sources.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.