Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 424151
Title Bias in estimating animal travel distance: the effect of sampling frequency
Author(s) Rowcliffe, J.M.; Carbone, C.; Kays, R.; Kranstauber, B.; Jansen, P.A.
Source Methods in Ecology and Evolution 3 (2012)4. - ISSN 2041-210X - p. 653 - 662.
DOI https://doi.org/10.1111/j.2041-210X.2012.00197.x
Department(s) Forest Ecology and Forest Management
Resource Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) bialowieza-primeval-forest - correlated random-walk - gps telemetry data - home ranges - movement data - body-size - behavior - models - poland - error
Abstract 1. The distance travelled by animals is an important ecological variable that links behaviour, energetics and demography. It is usually measured by summing straight-line distances between intermittently sampled locations along continuous animal movement paths. The extent to which this approach underestimates travel distance remains a rarely addressed and unsolved problem, largely because true movement paths are rarely, if ever, available for comparison. Here, we use simulated movement paths parameterized with empirical movement data to study how estimates of distance travelled are affected by sampling frequency. 2. We used a novel method to obtain fine-scale characteristics of animal movement from camera trap videos for a set of tropical forest mammals and used these characteristics to generate detailed movement paths. We then sampled these paths at different frequencies, simulating telemetry studies, and quantified the accuracy of sampled travel distance estimation. 3. For our focal species, typical telemetry studies would underestimate distances travelled by 67–93%, and extremely high sampling frequencies (several fixes per minute) would be required to get tolerably accurate estimates. The form of the relationship between tortuosity, sample frequency, and distance travelled was such that absolute distance cannot accurately be estimated by the infrequent samples used in typical tracking studies. 4. We conclude that the underestimation of distance travelled is a serious but underappreciated problem. Currently, there is no reliable, widely applicable method to obtain approximately unbiased estimates of distance travelled by animals. Further research on this problem is needed.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.