Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 425294
Title Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber
Author(s) Li, J.Y.; Busscher, H.J.; Norde, W.; Sjollema, J.
Source Colloids and Surfaces. B: Biointerfaces 84 (2011)1. - ISSN 0927-7765 - p. 76 - 81.
Department(s) Physical Chemistry and Colloid Science
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) coagulase-negative staphylococci - microbial adhesion - deposition - kinetics - surfaces - force
Abstract In order to investigate bacterium-substratum interactions, understanding of bacterial mass transport is necessary. Comparisons of experimentally observed initial deposition rates with mass transport rates in parallel-plate-flow-chambers (PPFC) predicted by convective-diffusion yielded deposition efficiencies above unity, despite electrostatic repulsion. It is hypothesized that sedimentation is the major mass transport mechanism in a PPFC. The contribution of sedimentation to the mass transport in a PPFC was experimentally investigated by introducing a novel microscopy-based method. First, height-dependent bacterial concentrations were measured at different times and flow rates and used to calculate bacterial sedimentation velocities. For Staphylococcus aureus ATCC 12600, a sedimentation velocity of 240 mu m h(-1) was obtained. Therewith, sedimentation appeared as the predominant contribution to mass transport in a PPFC. Also in the current study, deposition efficiencies of S. aureus ATCC 12600 with respect to the Smoluchowski-Levich solution of the convective-diffusion equation were four-to-five fold higher than unity. However, calculation of deposition efficiencies with respect to sedimentation were below unity and decreased from 0.78 to 0.36 when flow rates increased from 0.017 to 0.33 cm(3) s(-1). The proposed analysis of bacterial mass transport processes is simple, does not require additional equipment and yields a more reasonable interpretation of bacterial deposition in a PPFC. (C) 2010 Elsevier B.V. All rights reserved.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.