Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 425356
Title Scales in single root water uptake models: a review, analysis and synthesis
Author(s) Metselaar, K.; Lier, Q.D. van
Source European Journal of Soil Science 62 (2011)5. - ISSN 1351-0754 - p. 657 - 665.
DOI https://doi.org/10.1111/j.1365-2389.2011.01385.x
Department(s) Soil Physics, Ecohydrology and Groundwater Management
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) zea-mays l - soil-water - plant-roots - porous-media - hydraulic conductivity - computed-tomography - system architecture - nutrient-uptake - sample-size - volume
Abstract Scales in transport of water to roots are compared with the length and volume scales by using the concepts associated with the representative elementary volume (REV). The possibility of a mismatch between model scale and system scale when using a Darcy-Buckingham-based model to describe soil water transport to a single root is evaluated. In the absence of a mismatch, the replication requirements for evaluating the Darcy-Buckingham-based model near a single root are discussed by using a synthesis of the elementary scales involved, including those for soil, plant and roots, and of the measurement device. By using REV scales from lattice-Boltzmann simulations, the effective half-root mean distance and the available measurement techniques, the evaluation of Darcy-based single root uptake models is possible in roughly 50% of the combinations of soil- and root-system properties. On the basis of an assessment of the scale characterizing natural soil variability, the number of replicates required to assess the average root water uptake profile near a single root is large, and either requires miniaturization of the measurement methods for the hydraulic transport characteristics, or very homogeneous (artificial) growing media with little variability. Variability of water uptake per unit root length will increase the number of samples required.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.