Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 425396
Title Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber Part II: Use of fluorescence imaging
Author(s) Li, J.Y.; Busscher, H.J.; Mei, H.C. van der; Norde, W.; Krom, B.P.; Sjollema, J.
Source Colloids and Surfaces. B: Biointerfaces 87 (2011)2. - ISSN 0927-7765 - p. 427 - 432.
DOI https://doi.org/10.1016/j.colsurfb.2011.06.002
Department(s) Physical Chemistry and Colloid Science
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) deposition - adhesion - adsorption - biofilms - kinetics - gene
Abstract Using a new phase-contrast microscopy-based method of analysis, sedimentation has recently been demonstrated to be the major mass transport mechanism of bacteria towards substratum surfaces in a parallel plate flow chamber (J. Li, H.J. Busscher, W. Norde, J. Sjollema, Colloid Surf. B. 84 (2011)76). Here we describe a novel method for enumerating adhesion of fluorescent bacteria in a parallel plate flow chamber that allows direct imaging of the bacterial distribution along the length of the flow chamber, as caused by sedimentation. Imaging of fluorescence was done using macroscopic bio-optical imaging of the entire flow chamber, including top and bottom plates as well as of the flowing suspension in between. An algorithm is forwarded that allows to separate the fluorescence arising from the suspension and bottom plate and at the same time determines the single cell fluorescence from which the bacterial distribution over the entire bottom plate can be visualized. Enumeration of the numbers of bacteria adhering to the center of the glass bottom plate for a fluorescent Staphylococcus aureus strain was found to coincide with enumerations using phase-contrast microscopy. Moreover, due to the use of macroscopic bio-optical imaging, it was found that the number of adhering staphylococci increases linearly with distance from the inlet of the flow chamber, which could be explained from a simplified mass balance of convection, sedimentation and blocking near the bottom plate of the flow chamber.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.