Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 425401
Title Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions
Author(s) Gool, M.P. van; Toth, K.; Schols, H.A.; Szakacs, G.; Gruppen, H.
Source Bioresource Technology 114 (2012). - ISSN 0960-8524 - p. 523 - 528.
DOI http://dx.doi.org/10.1016/j.biortech.2012.03.037
Department(s) Food Chemistry Group
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) xylan-degrading enzymes - enzymatic-hydrolysis - aspergillus-awamori - pretreatment - cellulose - arabinoxylans - fermentation - degradation - adsorption - substrate
Abstract Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and corn fiber xylan rich fractions. Up to 14% of the carbohydrates in wheat straw and 34% of those in corn fiber were hydrolyzed. The degree of hydrolysis by the enzymes depended on the origin of the fungal isolate and on the complexity of the substrate to be degraded. Penicillium, Trichoderma or Aspergillus species, and some non-identified fungi proved to be the best producers of hemicellulolytic enzymes for degradation of xylan rich materials. This study proves that the choice for an enzyme preparation to efficiently degrade a natural xylan rich substrate, is dependent on the xylan characteristics and could not be estimated by using model substrates.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.