Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 425574
Title Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating
Author(s) Muszanska, A.K.; Busscher, H.J.; Herrmann, A.; Mei, H.C. van der; Norde, W.
Source Biomaterials 32 (2011)26. - ISSN 0142-9612 - p. 6333 - 6341.
DOI https://doi.org/10.1016/j.biomaterials.2011.05.016
Department(s) Physical Chemistry and Colloid Science
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) egg-white lysozyme - protein adsorption - bacterial adhesion - block-copolymers - hydrophobic surfaces - grafting density - biomaterials - brushes - temperature - interfaces
Abstract This paper describes the preparation and characterization of polymer protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the telechelic groups of the PEO chains. Covalent conjugation of lysozyme proceeded via reductive amination of aldehyde functionalized PEO blocks (CHO-Pluronic) and the amine groups of the lysine residues in the protein. SDS-PAGE gel electrophoresis together with MALDI-TOF mass spectrometry analysis revealed formation of conjugates of one or two lysozyme molecules per Pluronic polymer chain. The conjugated lysozyme showed antibacterial activity towards Bacillus subtilis. Analysis with a quartz crystal microbalance with dissipation revealed that Pluronic lysozyme conjugates adsorb in a brush conformation on a hydrophobic gold-coated quartz surface. X-ray photoelectron spectroscopy indicated surface coverage of 32% by lysozyme when adsorbed from a mixture of unconjugated Pluronic and Pluronic lysozyme conjugate (ratio 99:1) and of 47% after adsorption of 100% Pluronic-lysozyme conjugates. Thus, bifunctional brushes were created, possessing both anti-adhesive activity due to the polymer brush, combined with the antibacterial activity of lysozyme. The coating having a lower degree of lysozyme coverage proved to be more bactericidal.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.