Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 425758
Title Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes
Author(s) Biesheuvel, P.M.; Fu, Y.; Bazant, M.Z.
Source Russian Journal of Electrochemistry 48 (2012)6. - ISSN 1023-1935 - p. 580 - 592.
DOI https://doi.org/10.1134/S1023193512060031
Department(s) Sub-department of Environmental Technology
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) double-layer capacitors - carbon electrodes - activated carbon - thin-films - fuel-cell - model - deionization - interface - water - desalination
Abstract We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary particles that are porous themselves. The predominantly bimodal distribution of pores in the electrode consists of the interparticle or macroporosity outside the particles through which the ions are transported (transport pathways), and the intraparticle or micropores inside the particles, where electrostatic double layers (EDLs) are formed. Both types of pores are filled with electrolyte (solvent plus ions). For the micropores we make use of a novel modified-Donnan (mD) approach valid for strongly overlapped double layers. The mD-model extends the standard Donnan approach in two ways: (1) by including a Stern layer in between the electrical charge and the ions in the micropores, and (2) by including a chemical attraction energy for the ions to go from the macropores into the micropores. This is the first paper where the mD-model is used to model ion transport and electrochemical reactions in a porous electrode. Furthermore we investigate the influence of the charge transfer kinetics on the chemical charge in the electrode, i.e., a contribution to the electrode charge of an origin different from that stemming from the Faradaic reaction itself, e.g. originating from carboxylic acid surface groups as found in activated carbon electrodes. We show that the chemical charge depends on the current via a shift in local pH, i.e. “current-induced charge regulation.” We present results of an example calculation where a divalent cation is reduced to a monovalent ion which electro-diffuses out of the electrode.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.