Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 426515
Title Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria
Author(s) Streminska, M.A.; Felgate, H.; Rowley, G.; Richardson, D.J.; Baggs, E.M.
Source Environmental Microbiology Reports 4 (2012)1. - ISSN 1758-2229 - p. 66 - 71.
DOI https://doi.org/10.1111/j.1758-2229.2011.00302.x
Department(s) WUR GTB Gewasgezondheid
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) dependent nitrite reductase - escherichia-coli - bacillus-subtilis - enteric bacteria - ammonium - genes - roles
Abstract Here we provide the first demonstration of the potential for N2O production by soil-isolated nitrate-ammonifying bacteria under different C and N availabilities, building on characterizations informed from model strains. The potential for soil-isolated Bacillus sp. and Citrobacter sp. to reduce NO3-, and produce NH4+, NO2- and N2O was examined in batch and continuous (chemostat) cultures under different C-to-NO3- ratios, NO3--limiting (5 mM) and NO3--sufficient (22 mM) conditions. C-to-NO3- ratio had a major influence on the products of nitrate ammonification, with NO2-, rather than NH4+, being the major product at low C-to-NO3- ratios in batch cultures. N2O production was maximum and accompanied by high NO2- production under C-limitation/NO3-sufficiency conditions in chemostat cultures. In media with lower C-to-NO3-N ratios (5- and 10-to-1) up to 2.7% or 5.0% of NO3- was reduced to N2O by Bacillus sp. and Citrobacter sp., respectively, but these reduction efficiencies were only 0.1% or 0.7% at higher C-to-NO3- ratios (25- and 50-to-1). As the highest N2O production did not occur under the same C-to-NO3- conditions as highest NH4+ production we suggest that a re-evaluation may be necessary of the environmental conditions under which nitrate ammonification contributes to N2O emission from soil.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.