Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 427463
Title Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in CRISPR-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa
Author(s) Duijn, E. van; Barbu, I.M.; Barendregt, A.; Jore, M.M.; Wiedenheft, B.; Lundgren, M.; Westra, E.R.; Brouns, S.J.J.; Doudna, J.A.; Oost, J. van der; Heck, A.J.R.
Source Molecular and Cellular Proteomics 11 (2012). - ISSN 1535-9476 - p. 1430 - 1441.
DOI https://doi.org/10.1074/mcp.M112.020263
Department(s) Microbiological Laboratory
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) bacterial immune-system - crispr-cas systems - gas-phase - subunit architecture - antiviral defense - small rna - dna - recognition - prokaryotes - sequence
Abstract The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/ CRISPR-associated genes) immune system of bacteria and archaea provides acquired resistance against viruses and plasmids, by a strategy analogous to RNA-interference. Key components of the defense system are ribonucleoprotein complexes, the composition of which appears highly variable in different CRISPR/Cas subtypes. Previous studies combined mass spectrometry, electron microscopy and small angle X-ray scattering to demonstrate that the E. coli Cascade complex (405 kDa) and the P. aeruginosa Csy-complex (350 kDa) are similar in that they share a central spiral-shaped hexameric structure, flanked by associating proteins and one CRISPR RNA (crRNA). Recently, a cryo-electron microscopy structure of Cascade revealed that the crRNA molecule resides in a groove of the hexameric backbone. For both complexes we here describe the use of native mass spectrometry in combination with ion mobility mass spectrometry (IMMS) to assign a stable core surrounded by more loosely associated modules. Via computational modeling subcomplex structures were proposed that relate to the experimental IMMS data. Despite the absence of obvious sequence homology between several subunits, detailed analysis of sub-complexes strongly suggests analogy between subunits of the two complexes. Probing the specific association of E. coli Cascade/crRNA to its complementary DNA target reveals a conformational change. All together these findings provide relevant new information about the potential assembly process of the two CRISPR-associated complexes
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.