Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 428432
Title Mineralization and herbage recovery of animal manure nitrogen after application to various soil types
Author(s) Shah, G.M.; Rashid, M.I.; Shah, G.A.; Groot, J.C.J.; Lantinga, E.A.
Source Plant and Soil 365 (2013)1-2. - ISSN 0032-079X - p. 69 - 79.
DOI https://doi.org/10.1007/s11104-012-1347-8
Department(s) Farming Systems Ecology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) uncomposted poultry litter - organic-matter - different texture - plant uptake - slurry - decomposition - ryegrass - carbon - immobilization - microorganisms
Abstract Background and aim - Typical values of plant available nitrogen (N) from animal manures are provided in fertilizer recommendation schemes. However, only a few attempts have been made thus far to study the variation in these values among contrasting soil types. The objective of this study was to examine the interactions between animal manure and soil types on N mineralization and total plant N recovery (shoots¿+¿roots) during one growing season. Methods - A pot experiment was conducted in a greenhouse during a growth period of 180 days. Experimental treatments included solid cattle manure (SCM), cattle slurry (CS) and poultry manure (PM), all applied to sandy, clay and peat soils sown with perennial ryegrass. Total N application rate was 120 kg ha-1. Results - There were clear interactions (P¿¿sandy¿>¿clay. In case of the peat soil, net mineralization of the applied organic N was on average 90 % from PM, 39 % from SCM and 26 % from CS. However, in the clay soil a positive net N mineralization occurred only from PM (42 %). Besides, significant proportions of the applied mineral N from SCM (17 %) and CS (35 %) were immobilized in this soil type. Consequently, apparent total plant N recovery was highest in the peat soil with values of 80, 57 and 50 % from PM, CS and SCM, respectively. In contrast, these values were only 57, 28 and 15 % for the clay soil. Conclusions - It is concluded that wide variations do exist in the extent of net N mineralization and plant N recovery from a given animal manure type when applied to diverging soil types. This indicates the need for more soil-specific manure fertilizer recommendations.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.