Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 428916
Title Body dynamics and hydrodynamics of swimming larvae: a computational study
Author(s) Li, G.; Müller, U.K.; Leeuwen, J.L. van; Liu, H.
Source Journal of Experimental Biology 215 (2012). - ISSN 0022-0949 - p. 4015 - 4033.
DOI https://doi.org/10.1242/jeb.071837
Department(s) Experimental Zoology
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) inertial flow regimes - escape response - kinematics - locomotion - wake - performance - waves - morphology - zebrafish - fields
Abstract To understand the mechanics of fish swimming, we need to know the forces exerted by the fluid and how these forces affect the motion of the fish. To this end, we developed a 3-D computational approach that integrates hydrodynamics and body dynamics. This study quantifies the flow around a swimming zebrafish (Danio rerio) larva. We used morphological and kinematics data from actual fish larvae aged 3 and 5 days post fertilization as input for a computational model that predicted free-swimming dynamics from prescribed changes in body shape. We simulated cyclic swimming and a spontaneous C-start. A rigorous comparison with 2-D particle image velocimetry and kinematics data revealed that the computational model accurately predicted the motion of the fish's centre of mass as well as the spatial and temporal characteristics of the flow. The distribution of pressure and shear forces along the body showed that thrust is mainly produced in the posterior half of the body. We also explored the effect of the body wave amplitude on swimming performance by considering wave amplitudes that were up to 40% larger or smaller than the experimentally observed value. Increasing the body wave amplitude increased forward swimming speed from 7 to 21 body lengths per second, which is consistent with experimental observations. The model also predicted a non-linear increase in propulsive efficiency from 0.22 to 0.32 while the required mechanical power quadrupled. The efficiency increase was only minor for wave amplitudes above the experimental reference value, whereas the cost of transport rose significantly.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.