Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 429016
Title Pleiotropic effects of polymorphism of the gene diacylglycerol-O-transferase 1 (DGAT1) in the mammary gland tissue of dairy cows
Author(s) Mach Casellas, N.; Blum, Y.; Bannink, A.; Causeur, D.; Houee-Bigot, M.; Lagarrigue, S.; Smits, M.A.
Source Journal of Dairy Science 95 (2012)9. - ISSN 0022-0302 - p. 4989 - 5000.
Department(s) LR - Backoffice
LR - Animal Nutrition
CVI Infection Biology
Host Microbe Interactomics
Livestock Research
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) milk-production - germplasm collections - cattle breeds - factor model - fatty-acids - r-package - expression - traits - french - nucleotide
Abstract Microarray analysis was used to identify genes whose expression in the mammary gland of Holstein-Friesian dairy cows was affected by the nonconservative Ala to Lys amino acid substitution at position 232 in exon VIII of the diacylglycerol-O-transferase 1 (DGAT1) gene. Mammary gland biopsies of 9 homozygous Ala cows, 13 heterozygous cows (Ala/Lys), and 4 homozygous Lys cows in midlactation were taken. Microarray ANOVA and factor analysis for multiple testing methods were used as statistical methods to associate the expression level of the genes present on Affymetrix bovine genome arrays (Affymetrix Inc., Santa Clara, CA) with the DGAT1 gene polymorphism. The data was also analyzed at the level of functional modules by gene set enrichment analysis. In this small-scale experimental setting, DGAT1 gene polymorphism did not modify milk yield and composition significantly, although expected changes occurred in the yields of C14:0, cis-9 C16:1, and long-chain fatty acids. Diacylglycerol-O-transferase 1 gene polymorphism affected the expression of 30 annotated genes related to cell growth, proliferation, and development, remodeling of the tissue, cell signaling and immune system response. Furthermore, the main affected functional modules were related to energy metabolism (lipid biosynthesis, oxidative phosphorylation, electron transport chain, citrate cycle, and propanoate metabolism), protein degradation (proteosome-ubiquitin pathways), and the immune system. We hypothesize that the observed differences in transcriptional activity reflect counter mechanisms of mammary gland tissue to respond to changes in milk fatty acid concentration or composition, or both
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.