Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 429277
Title Energy consumption and constant current operation in membrane capacitive deionization
Author(s) Zhao, R.; Biesheuvel, P.M.; Wal, A.F. van der
Source Energy & Environmental Science 5 (2012). - ISSN 1754-5692 - p. 9520 - 9527.
DOI http://dx.doi.org/10.1039/C2EE21737F
Department(s) Sub-department of Environmental Technology
WU Plant SciencesDepartment of Plant Sciences
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) water desalination - porous-electrodes - seawater desalination - carbon electrodes - charge efficiency - brackish-water - technology - electrochemistry - electrosorption - improvement
Abstract Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In the salt removal step, ions are adsorbed at the carbon–water interface within the micropores inside the porous electrodes. After the electrodes reach a certain adsorption capacity, the cell voltage is reduced or even reversed, which leads to ion release from the electrodes and a concentrated salt solution in the spacer channel, which is flushed out, after which the cycle can start over again. Ion-exchange membranes are positioned in front of each porous electrode, which has the advantage of preventing the co-ions from leaving the electrode region during ion adsorption, while also allowing for ion desorption at reversed voltage. Both effects significantly increase the salt removal capacity of the system per cycle. The classical operational mode of MCDI at a constant cell voltage results in an effluent stream of desalinated water of which the salt concentration varies with time. In this paper, we propose a different operational mode for MCDI, whereby desalination is driven by a constant electrical current, which leads to a constant salt concentration in the desalinated stream over long periods of time. Furthermore, we show how the salt concentration of the desalinated stream can be accurately adjusted to a certain setpoint, by either varying the electrical current level and/or the water flow rate. Finally, we present an extensive dataset for the energy requirements of MCDI, both for operation at constant voltage and at constant current, and in both cases also for the related technology in which membranes are not included (CDI). We find consistently that in MCDI the energy consumption per mole of salt removed is lower than that in CDI. Within the range 10–200 mM ionic strength of the water to be treated, we find for MCDI a constant energy consumption of 22 kT per ion removed. Results in this work are an essential tool to evaluate the economic viability of MCDI for the treatment of saltwater.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.