Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 429343
Title Observation uncertainty of satellite soil moisture products determined with physically-based modeling
Author(s) Wanders, N.; Karssenberg, D.; Bierkens, M.F.P.; Parinussa, R.; Jeu, R. de; Dam, J.C. van; Jong, S. de
Source Remote Sensing of Environment 127 (2012). - ISSN 0034-4257 - p. 341 - 356.
DOI https://doi.org/10.1016/j.rse.2012.09.004
Department(s) Soil Science Centre
Soil Physics, Ecohydrology and Groundwater Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) passive microwave measurements - improving runoff prediction - vegetation optical depth - ers scatterometer - amsr-e - retrieval - assimilation - validation - algorithm - index
Abstract Accurate estimates of soil moisture as initial conditions to hydrological models are expected to greatly increase the accuracy of flood and drought predictions. As in-situ soil moisture observations are scarce, satellite-based estimates are a suitable alternative. The validation of remotely sensed soil moisture products is generally hampered by the difference in spatial support of in-situ observations and satellite footprints. Unsaturated zone modeling may serve as a valuable validation tool because it could bridge the gap of different spatial supports. A stochastic, distributed unsaturated zone model (SWAP) was used in which the spatial support was matched to these of the satellite soil moisture retrievals. A comparison between point observations and the SWAP model was performed to enhance understanding of the model and to assure that the SWAP model could be used with confidence for other locations in Spain. A timeseries analysis was performed to compare surface soil moisture from the SWAP model to surface soil moisture retrievals from three different microwave sensors, including AMSR-E, SMOS and ASCAT. Results suggest that temporal dynamics are best captured by AMSR-E and ASCAT resulting in an averaged correlation coefficient of 0.68 and 0.71, respectively. SMOS shows the capability of capturing the long-term trends, however on short timescales the soil moisture signal was not captured as well as by the other sensors, resulting in an averaged correlation coefficient of 0.42. Root mean square errors for the three sensors were found to be very similar (± 0.05 m3m- 3). The satellite uncertainty is spatially correlated and distinct spatial patterns are found over Spain.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.