Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
Record number 429760
Title Finding the optimal growth-light spectrum for greenhouse crops
Author(s) Hogewoning, S.W.; Trouwborst, G.; Meinen, E.; Ieperen, W. van
Source In: Proceedins of the VII International Symposium on Light in Horticultural Systems, 15-18 October 2012, Wageningen, the Netherlands. - Leuven : ISHS - p. 357 - 363.
Event Leuven : ISHS VII International Symposium on Light in Horticultural Systems, Wageningen, 2012-10-15/2012-10-18
Department(s) Horticultural Supply Chains
WUR GTB Gewasfysiologie Management en Model
Publication type Contribution in proceedings
Publication year 2012
Abstract Abstract: Especially in an open crop (e.g., young plants) morphological responses to light quality can affect light interception, crop photosynthesis and growth. Earlier work showed a substantial morphology related biomass increase for young cucumber plants grown under 100% artificial sunlight (ASL) compared with 100% high pressure sodium light (HPS). Here, ASL is used to investigate the effect of HPS and LEDs compared with ASL, when applied supplemental to an ASL background. Tomato plants were grown in a climate room under 17 h ASL (50% of in total 200 µmol PAR m-2 s-1) supplemented with 50% HPS, light emitting diodes LEDs (red/blue), or ASL. The 100% ASL-grown plants produced 32-45% more dry weight, due to a more efficient light interception. As ASL lamps are not energy-efficient enough for commercial production we tried to simplify the solar spectrum while retaining enhanced crop productivity in greenhouses. Red/blue/far-red LEDs, at a ratio inducing the same phytochrome photostationary state (PSS) as natural sunlight, and sulphur-plasma lamps, emitting a continuous spectrum in the PAR-region, were tested and compared with supplemental red/blue LEDs, HPS and ASL in a greenhouse experiment. Red/blue/far-red LEDs resulted in a visual appearance similar to the ASL-plants, while red/blue LEDs produced the most compact morphology. Red/blue/far-red LEDs enhanced dry weight for cucumber (+21%) and tomato (+15%) compared with HPS. Dry weight and compactness were intermediate for sulphur-plasma. The differences were attributable to effects of leaf orientation and positioning on light interception, and not to photosynthesis per unit leaf area. The PSS appears to be a key-factor to control crop morphology, providing a tool to induce ‘sunlight’ crop characteristics to enhance productivity.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.