Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 429761
Title Differences in acidity of apples are probably mainly caused by a malic acid transporter gene on LG16
Author(s) Khan, S.A.; Beekwilder, J.; Schaart, J.G.; Mumm, R.; Soriano, J.M.; Jacobsen, E.; Schouten, H.J.
Source Tree Genetics and Genomes 9 (2013)2. - ISSN 1614-2942 - p. 475 - 487.
Department(s) PRI Biodiversity and Breeding
PRI BIOS Applied Metabolic Systems
WUR Plant Breeding
Laboratory of Plant Breeding
Publication type Refereed Article in a scientific journal
Publication year 2013
Keyword(s) malus-pumila mill. - phenolic-compounds - aluminum tolerance - malate transporter - organic-acids - amino-acids - arabidopsis - metabolism - fruits - inheritance
Abstract Acidity has profound effects on the taste of apples (Malus × domestica). Malic acid is the predominant organic acid in apples. Differences in malic acid content are caused by differences in accumulation of malic acid in the vacuole. This accumulation may be caused by a gene that is responsible for transport of malic acid from the cytosol into the vacuole. Here, we provide evidence that a malic acid transporter gene at the top of chromosome 16 caused significant differences in malic acid concentration and pH of apples. The pH of apples in a segregating F1 population was mapped and at the pH locus (named henceforth Ma locus for malic acid), two putative malic acid transporter genes were detected. These genes show high homology to AtALMT genes that code for malate channel proteins located in vacuolar membrane in Arabidopsis. The expression of one of the candidate genes (Ma1) cosegregated clearly with malic acid content. The inheritance of at least one dominant allele of this gene sufficed for an increased expression level that likely caused the observed threefold increase of the malic acid concentration and the reduction of the pH from 4 to 3 in mature apples, compared to the presence of the recessive, lowly expressed allele only. Our results show that differences in fruit acidity were probably caused by differences in expression levels of alleles of a malic acid transporter gene.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.